SIGMOD Programming
Contest 2014

VIDA Team: Fernando Chirigati, Kien T. Pham, and Tuan-Anh Hoang-Vu
Supervised by Huy T. Vo

POLYTECHNIC SCHOOL
OF ENGINEERING

NYU

Problem

* Given a synthetic social network, execute a set of queries as
quickly as possible
* Data: LDBC Social Network Benchmark
Main dataset: friendship relationship (Persons Graph)

Other datasets: comments, interest tags, forums, post likes, ...

* Queries: 4 types of query

* Different social network sizes are tested — from 1K to 1M
persons

Solution Overview

* Implementation in C++ (Standard Library and Boost)
* General optimizations

* An efficient graph encoding to minimize dynamic allocation

* A technique to execute multiple BFS concurrently in a single
thread: MS-BFS (Multiple-Source BFS)

* Multithreading strategy to efficiently use the available resources
* Query type-specific optimizations
* Incremental reduction of the graph [Query Type 1]

* Precomputation of solutions prior to query execution
[Query Type 2]

* Early termination of queries [Query Types 3 and 4]

Solution Overview

* General optimizations
* An efficient graph encoding to minimize dynamic allocation

* A technique to execute multiple BFS concurrently in a single
thread: MS-BFS (Multiple-Source BFS)

* Multithreading strategy to efficiently use the available resources

Graph Encoding

* Use of adjacency list
* Implementation avoids dynamic allocations

310 | 2| Adjacency List

Edge Index

MS-BFS

 Stands for Multiple-Source BFS

* General idea
* MS-BFS can perform 64 BFS concurrently
* There is no need for locking or multiple threads

* MS-BFS updates queue and visited vertices using bit masks and
efficient bit operations

* Vertices can be shared and explored only once for multiple
concurrent BFS

MS-BFS o¥ao¥e

BFS
—
0
. 1
Vertices

2
v 3

Q,
0
1
2
3

MS-BFS oRo¥e

Hop =0
0 1
0| X
1 X
2
3
Q,
0| X
1 X
2
3

QQM

MS-BFS

o <
Il o
Q o =
Q (=} x| X > x| <
Ny
o i AN o (@) — (@] o
(@)
n - > >
Q o >
Q o > >
I
o i (@\] o o — (@] o

G
aQM

MS-BFS

i ~ > X1 X
I o
Q. g =
Q Q <1 X pod x| <
I

O «+=H NN o O «+=H NN o
(@)
I ~ X >
Q. of =
Qo Q | X >
I

O =€ N o O =€ N o

0
@

MS-BFS

™N
AN > < | x| <] x<
o
Q g >
O o < <| x| x<| =<
I
O =« AN o O =« N o

1
~ > x| X

I —
Q. o} >
Q (w) > X X X X
I

o — AN o o — (@] o
)
T ~ > >
Q. ot =
Qo Q > >
I

o — (@\] o (@] — (@] (9p]

0
@

MS-BFS

Vertex 2 is being

d
QO
N
S

ey
N
S

)
O
~
S

Q
S

N
PR I =< < <] x| x
o

Q. (@f >
O o > < <1 x| %<
I

O «+€ &N o O = N o
1

~ > x| X

1 -
Q a >
QO ©O© <1 X > x| x
I

O =€ o o O «+=H NN o
(@)
Q of =
O o | x >
I

O «+H &N o O =€ N o

0
oRo¥e

MS-BFS

-~ > > X | X| X | X
o
a >
(=} > X | X| X | X
o i (V] o o — oN on
~ > > >
—
g >
(=} X1 X > X | X
o i AN on (@) i (@] o
~ X >
g >
(= > >
o i (@\] o o i (@] o

>
>
2
5 2
>
.m —= s
= =
S g
QL In
pll
S =
2 23
m Jd>
a”lx > X | X| X | X
o
o Q. o} =
QO o > X | X| X | X
I
e O «—=H N o O == N o
‘_I__1. > X | X
Q a =
QO o X | X pod x| X
I
O = N o O == N o
__ ()
B y < <
Q of =
i QO o | x >
W =
““ O <= N o O <= N o

Multithreading Strategy

* |/O for Query Type 1 is a bottleneck
 Strategy provides an efficient use of resources

Initialize Data
Structures for Query 3

Initialize Data Structures for Query 4

Initialize Data Structures for Query 2

Initialize Data Structures for Query 1

Main | Initialize Shared Initialize Execute Print Results
Execute Query 3 Execute Query 4 Execute Query 1
Thread | Data Structures Data Structures y y Query 2 y to stdout

A ' A ' A

'
\ 4 : A\ : \ 1

8 Threads 8 Threads 8 Threads

Solution Overview

* Query type-specific optimizations
* Incremental reduction of the graph [Query Type 1]

* Precomputation of solutions prior to query execution
[Query Type 2]

* Early termination of queries [Query Types 3 and 4]

Query Type 1

queryl(P,,P, ,x) — Find the shortest path between persons P,
and P, in Persons Graph where all persons have made more than

X comments to each other
* Add number of comments in Persons Graph

adding
weights

Query Type 1

queryl(P,,P, ,x) — Find the shortest path between persons P,
and P, in Persons Graph where all persons have made more than
X comments to each other

* Queries are grouped by x and graph is incrementally reduced

Persons Graph +
Weighted Edges

|

——> | MS-BFS | [——> Results

X
Il
—

13
l

Remove edges
with weight <= -1

7
4
4
4
4
—_— 4

Remove edges
with weight <=0

|
N
x
I
o

—> | MS-BFS | —> Results

l

Queries ¢
Type 1 N L.

. . .
N\
A
N

Remove edges
with weight <=N

,

X
Il

pd

—> | MS-BFS | —— Results

l

Query Type 2

query2(k, d) — Find top k interest tags with largest communities of
people that know each other and who were born on date d or later

* Precomputation: size of connected components for each interest tag
ordered by birthdate

* Use binary search to get the size of the largest component given
birthdate d

+
interest tag information

birthday
<€
tag, | P, |P,|P;|P,|Ps
111(2]3]3 —
o 0.0 0 size of the largest
® connected component Binary Search (d)
I E < Query 2 (k, d)

Top-k results

Y

Partial Sort (k)

©
<

t092 ’D1 Pz 'Ds 4|5

Pre-Computation

Query Type 3

query3(k, h, p) — Find top k pairs of persons with respect to
number of common interest tags, maximum number of hops
between persons in Persons Graph is h; pair must be located in

p, or study or work in organizations located in p
* Co-located persons are sorted by number of interest tags
* BFS is executed in Persons Graph for each of these persons

* Early termination

Stop query execution when number of tags of upcoming person is less
than the current minimum of top k

n. of common
Interest tags current

minimum

Top k

Query Type 4

queryd(k,t) — Find top k persons with highest closeness centrality
values in Persons Graph where all persons are members of forums
with interest tag t

* Closeness centrality:
(r(P)-1)x(r(P)-1)
(n=1)x(s(P))

* Persons who are not members in these forums are removed from
Persons Graph

cc(P) =

* Persons are sorted by degree

BFS is executed for each person closeness I ls(P)
. . centrality
Early termination Top k L)
* Stop BFS when current accumulated s(P) current

is greater than the current maximum of top k maximum s(P)

Further Optimizations

We sacrifice memory to boost performance

Some data structures are shared across different query types
* E.g.: Persons Graph, Persons and Tag information, ...

Persons ids are normalized

Vectors and arrays are used instead of maps

Size of data structures are estimated based on file size
Repeated queries are executed only once

Memory mapped files (from Boost) are used to improve /0
performance

Running time (second)

Statistics

* 2,556 lines of code
* 255 submissions / 45 days (01/03 — 04/14): around 5
submissions / day
* 39 failed submissions; 196 passed submissions
Improvements on small dataset (1k) Improvements on medium data set (10k) Improvements on large data set (100k)
1 g 30 g 14i
N : , :

Time Time Time

Thank You!

Questions?

VIDA Team: Fernando Chirigati, Kien T. Pham, and Tuan-Anh Hoang-Vu
Supervised by Huy T. Vo

POLYTECHNIC SCHOOL
OF ENGINEERING

NYU

